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Abstract 

In a truly smart grid, system load would be known, in advance, with a high degree of confidence.  

Currently, this goal of “smart forecasting” is far from being realized.  In the Pacific Gas and 

Electric (PG&E) aggregation area managed by the California Independent System Operator 

(ISO), the root mean squared day-ahead forecast error was about 3.8 percent of actual load over 

the period 1 April 2009 through 31 March 2010.   This error may appear small except for the 

inconvenient fact that the stability of the power system requires that electricity demand and 

supply of electricity match at all times, not merely on average. 

 

This paper contends that if day-ahead markets for electricity are efficient, then the day-ahead 

prices will reflect the load forecast generated by the system operator along with the information 

processed by and the consequent insights of all market participants. For example, suppose a 

system operator fails to account for the effect of a holiday in its load forecast but that market 

participants know that the holiday in question will boost demand. The market participants will 

incorporate the holiday induced demand into their economic calculations so that the impact of 

the holiday on electricity demand will be reflected in the day-ahead prices. Consequently, one 

can hypothesize that if day-ahead prices reflect the processed information and expectations of all 

market participants regarding day-ahead demand, then descriptive measures of the day-ahead 

prices may be useful in explaining the forecast errors by the system operator.  We test this 

hypothesis using data for the PG&E aggregation area in the California ISO. The results indicate 

that the load forecasting errors have a significant systematic component. A portion of this 

systematic component is accounted for by the “shape” of the day-ahead forecasted load profile, 

the “shape” of the day-ahead price profile, and the day-ahead hourly price relative to the price of 

natural gas, natural gas being one of the primary fuels used to produce electricity in California.  

Evidence is presented that the root-mean-squared errors of the day-ahead load forecasts can be 

significantly reduced when the load forecasts are modified using the day-ahead information.  
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1. Introduction  

To neoclassical economists, market prices are the primary signals ensuring efficient resource 

allocation.  While many might concede that markets “work” in the abstract, events like the 

California power crisis of 2000/2001, the oil price spike of 2008, and the 2008/2009  global 

financial crisis have undeniably and seriously undermined people’s confidence in the ability of 

markets to adequately address important resource allocation issues. 

 

Opposition to the use of the price mechanism is particularly fierce in the case of electricity. For 

instance, Blumsack and Lave (2006) have argued that the restructuring of the electricity sector 

has been a failure because of market manipulation.  Van Doren and Taylor (2004) have also 

concluded that electricity restructuring has been a failure and that “vertical integration may be 

the most efficient organizational structure for the electricity industry.” (Van Doren and  Taylor 

2004, p  9).  And in a review of several restructuring studies, Kwoka (2008) adds his voice to the 

chorus of critics of the use of markets in the electricity sector.    

 

Regardless of one’s views on the use of markets to allocate resources, the minimization of 

generation costs requires highly accurate day-ahead forecasts of electricity demand.  In a truly 

smart grid, system load would be known in advance with a high degree of confidence.  This goal 

of “smart forecasting” is currently far from being realized.  In the Pacific Gas and Electric 

(PG&E) aggregation zone managed by the California Independent System Operator (ISO), the 

root mean squared forecast error was approximately 450 MW over the period 1 April 2009 

through 31 March 2010 corresponding to about 3.8 percent of average load.  This error level may 

appear small except for the inconvenient fact the stability of the power system requires that the 

supply of electricity match demand at all times, not merely on average. 
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One of the load forecasting challenges that the California ISO faces is known as the “Delta 

Breeze” phenomenon (SIO and SAIC, 2004), a sea breeze that carries the cool air from the ocean 

into the San Francisco Bay area and up to 100 miles inland (SIO and SAIC, 2004, p. 15).  The 

breeze is most prevalent between May and September and thus the breeze lowers the cooling 

component of the electric load.  The absence of the breeze can lead to significantly higher 

electricity load.  The California ISO has reported that the Delta Breeze is difficult to predict (SIO 

and SAIC, 2004, p. 27).  Analyses of weather forecasts by NOAA confirm this view with the 

errors in forecasted temperatures being systematically positive (forecasted temperatures minus 

actual temperatures are greater than zero) when the Delta Breeze is blowing and systematically 

negative (forecasted temperatures minus actual temperatures are less than zero) when it is not 

(SIO and SAIC, 2004, p. 11).  Because load is temperature sensitive, these errors have 

contributed to significant load forecasting errors.  For example, on May 28 2003, the day-ahead 

forecasted load was 35,012 MW while the actual load was 39,577 MW.  As a result, a stage 1 

alert had to be declared (SIO and SAIC, 2004, p. 7). The California ISO is not the only balancing 

area to experience nontrivial load forecasting errors. Preliminary analyses of the load forecast 

errors for the French Power Grid, the New York ISO, and the PJM RTO reveal that the day–

ahead load forecast errors in these balancing areas are nontrivial as well.  For example, over the 

period 1 January 2000 through 31 December 2008, approximately 16 percent of the days in New 

York City, the New York ISO’s leading zone in terms of electricity consumption, had a root-

mean-day-ahead-forecast-error in excess of five percent of daily mean load.  In the case of the 

French power grid, over the period 1 November 2003 through 31 December 2007, approximately 

seven percent of the days in France had a root-mean-day-ahead-forecast-error in excess of five 

percent of daily mean load.  
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This paper assesses the efficiency of markets with what we think is a novel test of the 

informational content of prices in electricity markets.  Following Bachelier (1900), the first to 

recognize what has become known as the efficient market hypothesis, we begin with the 

proposition that if day-ahead markets for electricity are efficient, then day-ahead prices will 

reflect the load forecast generated by the system operator as well as the information processed by 

and the consequent insights of all market participants.  For example, suppose a system operator 

has failed to account for the effect of a holiday in its load forecast but that market participants 

know that the holiday in question will boost demand.  The market participants will incorporate 

the holiday induced demand into their economic calculations and thus the impact of the holiday 

on electricity demand will be reflected in the day-ahead prices. As for the system operator, the 

holiday will give rise to a load forecasting error.  Consequently, to the extent that there are many 

of these holidays, the load forecasting errors and day-ahead prices will be correlated.  More 

importantly, if the market is efficient, the day-ahead prices will reflect all available 

meteorological information including the forecasts by any proprietary models that are more 

accurate than that employed by the system operator.  Hence, one can hypothesize that if day-

ahead prices accurately reflect the processed information and expectations of all market 

participants regarding day-ahead demand, then descriptive measures of the various distributional 

characteristics of day-ahead prices will be useful in predicting the day-ahead load.  We also 

believe that the errors will be related to the complexity of the load profile and thus we include 

measures of the “shape” of the day-ahead forecasted load profile as explanatory variables. 

The remainder of the paper is organized as follows.  Section 2 provides some background 

material on the California ISO.  Section 3 presents and estimates a model that seeks to explain 
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the load forecasting errors in the PG&E Load Aggregation Point (LAP).   Section 4 summarizes 

the results and presents a roadmap for future research. 

 

 

2. The California ISO 

The California Independent System Operator (ISO) launched a Market Redesign and Technology 

Upgrade (MRTU) on Wednesday, April 1, 2009.  Under the new system, there are three load 

aggregation points (LAPs) that correspond to the service territories of Pacific Gas and Electric 

(PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDGE).  The LAP 

prices are the load weighted average price of all the location marginal prices (LMPs) located 

inside the LAP.  Figure 1 depicts the service territory of PG&E.  Inspection of the figure reveals 

that the area affected by the “Delta Breeze” largely lies within the PG&E service territory. 
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Figure 1. PG&E’s Service Territory 
 

 
 

Figure 2 depicts a histogram of the day-ahead forecast errors for the PG&E LAP over the period 

1 April 2009 through 31 March 2010 where the error is defined as forecasted load minus actual 

load. 
1
 Inspection of the figure reveals that there were a nontrivial number of hours in which the 

forecast error was more than 1,000 MW. 

                                                           
1
 The California ISO reports load by transmission access charge (TAC) areas. There are currently three TACs in the 

control area:   TAC_NORTH,    TAC_ECNTR, and     TAC_SOUTH. .    According to CAISO personnel, there is a 

very close correspondence between the TACs and the demand LAPs with TAC NORTH being like the PG&E 

demand LAP.  The essential difference between the TACs and the demand LAPs is that the TACs also include 

external transmission facilities that have been placed under CAISO operational control.  These facilities have no 

bearing on the levels of forecasted and actual load since the reported values by TAC region only reflect electricity 

consumption that is internal to the California ISO.  Consistent with this interpretation, the load data sets from the 

California OASIS identifies load by the TAC areas PGE, SCE, and SDG&E.  We are grateful to Darren Lamb of the 

California ISO for his clarification of this issue. 
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In terms of supply costs, the price of electricity in the California ISO is highly dependent on the 

delivered price of natural gas and the heat rates of the marginal generating unit.  When load is 

low, only the most efficient plants are dispatched and thus prices will reflect the natural gas 

purchasing costs of these low heat rate units.  When loads are high, less efficient generating units 

will be the marginal source of supply and the day-ahead market price of electricity will reflect 

the gas purchasing costs of these higher heat rate units to the extent that the day-ahead electricity 

market is efficient.  As a result, there is a positive relationship between the day-ahead 

electricity/gas price ratio and load.  In this paper, we refer to this day-ahead price ratio as the 

“sparks ratio”. It is calculated under the assumption of no energy losses and thus increases as 

generating units with higher heat rates are expected to be dispatched.  The relationship between 

this ratio and load for the PG&E LAP is depicted in Figure 3. 
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Figure 2. A Histogram of the Day-Ahead Load Forecasting Errors for the PG&E LAP by 

the California ISO, 1 April 2009 – 31 March 2010 
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Figure 3. The Day-Ahead “Sparks Ratio” and the Actual Level of Load for the PG&E LAP 

in the California ISO, 1 April 2009 – 31 March 2010 

 

 

Notes: The “Sparks Ratio” is calculated under the assumption of no energy losses, i.e. that 1 MWh is 

equivalent to 3.412 MMBTU.  To facilitate the presentation of the data, the ratio in the figure is reported for 

the range of one through ten. This range accounts for over 98 percent of the observations. 
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3. A Model of Load Forecasting Errors 

Given the discussion of the previous sections, our econometric model presumes that the load 

forecasting error is a function of the day-ahead sparks ratio, the day-ahead price profile, the day-

ahead profile of forecasted load, and the hourly forecasted load relative to the forecasted profile. 

The day-ahead price profile is comprised of the coefficient of variation and skewness in the day-

ahead prices. The day-ahead load profile consists of the coefficient of variation and skewness in 

the day-ahead forecasted load, the forecasted peak load, and the forecasted minimum load.  The 

hourly forecasted load relative to the forecasted load profile is measured by the hourly forecasted 

load relative to both the peak and minimum forecasted levels of load.  Finally, we include binary 

variables for the hour of the day, the day of the week, the month of the year, and if the hour in 

question occurs between sunrise and sunset.  

 

It is also presumed that the marginal impact of each explanatory variable on the error measured 

in MW depends on the values of the other explanatory variables. For example, we  expect that 

the marginal impact of an increase in SparksRatio on the error measured in MW will likely 

depend on the hour of the day and on the forecasted peak hourly load. For this reason, we model 

the forecast error as the natural logarithm of the actual load relative to the forecasted load.
2
  

Under this formulation, the marginal impact each independent variable on the error measured in 

MW is contingent on the values of the other independent variables. 

  

                                                           
2
 The ratio of actual to forecasted load is used in place of the difference since the natural logarithms of negative 

numbers are undefined. 
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 In its most general form, the model is given by: 

 

 

),,                              

(1)             ,,,, ,                               

,,,,,,,(ln

ddd

ddddd

ddhdhdikjhd

NegSkewFLPosSkewFLCVFL

FLNadirFLPeakioFLNadirRatoFLPeakRatiNegSkewP

PosSkewPCVPoSparksRatiDaylightMonthDayHourfrorForecastEr 

 

where: 

lnForecastError hd   is the natural logarithm of the ratio of actual to forecasted load for hour h in 

day d; 

Houri  are binary variables representing each hour of the day excluding hour one (j = 2 to 24);. 

Dayk are binary variables representing each day of the week excluding Monday (k = 2 to 7); 

Monthi  are binary variables representing each month excluding January(i = 2 to 12); 

Daylighthd is a binary variable that is equal to one if hour h in day d occurs between sunrise and 

sunset; 

SparksRatiohd  equals the day-ahead Apnode price for hour h in day d for the PG&E LAP 

divided by the price of natural gas reported by California ISO for the PG&E LAP  the day prior 

to the closing of the day-ahead electricity market.  The Apnode price for the PGE LAP is the 

locational marginal price for the PGE aggregated pricing node.  The price of natural gas is 

normalized to its MWh equivalent under the assumption of zero energy losses. This is done by 

multiplying the price per MMBtu by 3.412 . 

 

CVPd is the coefficient of variation in the 24 hourly day-ahead prices in day d. Specifically, for 

each day both the average hourly price and the standard deviation in the prices are calculated. 

The ratio of the latter to the former is defined as CVP . 

PosSkewPd equals the skewness in the 24 day-ahead hourly prices in day d when the skewness in 

the hourly prices is positive. It is equal to zero otherwise. 

NegSkewPd equals the absolute value of skewness in the 24 day-ahead hourly prices in day d 

when the skewness in the prices is negative. It is equal to zero otherwise. 

FLPeakRatiohd  equals the ratio of the forecasted load in hour h relative to the forecasted peak 

load in day d 

FLNadirRatiohd equals the ratio of the forecasted load in hour h relative to the forecasted 

minimum load level in day d 
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FLPeakd is the forecasted peak hourly load in day d 

FLNadird is the forecasted minimum hourly load in day d 

CVFLd is the coefficient of variation in the 24 hourly day-ahead prices in day d. Specifically, for 

each day both the average hourly price and the standard deviation in the prices are calculated. 

The ratio of the latter to the former is defined as CVFLd; 

PosSkewFLd equals the skewness in the 24 day-ahead hourly prices in day d when the skewness 

in the day-ahead forecasted hourly load is positive. It is equal to zero otherwise. 

NegSkewFLd equals the absolute value of skewness in the 24 day-ahead hourly levels of 

forecasted load in day d when the skewness in the forecasted  hourly load is negative. It is equal 

to zero otherwise. 

 

Data to calculate the “daylight” variable were obtained from 

http://www.timeanddate.com/worldclock/sunrise.html .  All remaining data were obtained from 

California’s ISO website (http://oasis.caiso.com/mrtu-

oasis/home.jsp?doframe=true&serverurl=http%3a%2f%2farptp10.oa.caiso.com%3a8000&volu

me=OASIS ). In five cases, the calculated SparksRatio was more than five standard deviations 

above its mean of 2.43. These observations were considered to be extreme outliers and were 

dropped from the analysis. The transition days between standard and daylight savings time (and 

back again) are also dropped from the analysis. 

 

 In many markets, prices exhibit unit roots which preclude conventional regression analysis. For 

all non-binary variables in this study, Augmented Dickey-Fuller tests were performed.  The 

results are reported in Table 1.  Inspection of the table shows that the null hypothesis of a unit 

root can be rejected at the five percent level for all variables. In all but one case, the null 

hypothesis of a unit root can be rejected at the one percent level. Accordingly, our regression 

results are not expected to be plagued by non-stationarity issues. 

 

 

 

http://www.timeanddate.com/worldclock/sunrise.html
http://oasis.caiso.com/mrtu-oasis/home.jsp?doframe=true&serverurl=http%3a%2f%2farptp10.oa.caiso.com%3a8000&volume=OASIS
http://oasis.caiso.com/mrtu-oasis/home.jsp?doframe=true&serverurl=http%3a%2f%2farptp10.oa.caiso.com%3a8000&volume=OASIS
http://oasis.caiso.com/mrtu-oasis/home.jsp?doframe=true&serverurl=http%3a%2f%2farptp10.oa.caiso.com%3a8000&volume=OASIS
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Table 1 

Augmented Dickey-Fuller Tests for Unit Root   

 

Variable Test Statistic 1 Percent Critical Value  5 Percent Critical Value  

             
      

-20.814 -3.430 -2.860 

    
      

-7.062 -3.430 -2.860 

                             
-12.523 -3.430 -2.860 

                    
-9.452 -3.430 -2.860 

            
        

-15.869 -3.430 -2.860 

             
    

-14.947 -3.430 -2.860 

         
-4.407 -3.430 -2.860 

               
-3.416 -3.430 -2.860 

     
     

-5.786 -3.430 -2.860 

            
-12.088 -3.430 -2.860 

                     
-9.074 -3.430 -2.860 

 

The estimation of (1) was conducted using the multivariable fractional polynomial (MFP) model, 

a useful technique when one suspects that some or all of the relationships between the dependent 

variable and the explanatory variables are non-linear (Royston and Altman, 2008) but there is 

little or no basis, theoretical or otherwise, on which to select particular functional forms.  The 

MFP approach begins by estimating a model that is strictly linear in the explanatory variables.  

Subsequent estimations then cycle through a battery of nonlinear transformations of the 

explanatory variables (positive and negative powers, natural logarithms, etc.) until it finds the 

MFP model that best predicts the dependent variable.  In our case, the analysis provided support 

for including five of the explanatory variables with powers other than unity.  Specifically, the 

MFP model obtained is given by: 
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where const represents the overall constant term.  Parameter estimates, t-statistics, p-values, and 

diagnostics are provided in Table 2. 

Consistent with the conjecture that a significant proportion of the load forecast error is 

systematic, the adjusted R-squared of the estimated equation is approximately 0.48.  Almost all 

binary variables representing the hour of the day, day of the week, and month of the year are 

statistically significant.  The binary variable for daylight is also statistically significant.  It may 

appear odd that these variables are statistically significant since the systematic hourly, daily, and 

monthly variations in load would seem to be essential pieces of information that experienced 

load forecasters would possess. Surprisingly, however, preliminary analyses of load forecast 

errors for several other power grids indicate that this may not be an isolated finding.  

The estimated coefficients on the variables NegSkewPd, PosSkewFLd, and NegSkewFLd  are 

statistically insignificant.  Estimated coefficients on the remaining continuous variables are 

statistically significant at all standard levels.  For example, the coefficient on              
  

while small in value is highly statistically significant indicating that the forecast error will be 

larger, ceteris paribus, the higher the day-ahead price of electricity relative to the price of natural 

gas.  Another notable result is the coefficient on      
 .  Its positive coefficient is consistent 

with our expectation that increases in expected load variability over the course of the day makes 

load more difficult to forecast. 
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Table 2 

Equation 2 Regression Results  

Variable Estimated 

Coefficient 

t- Statistic P value 

const 0.5576 12.99 <  0.001 

Hour2 0.0075 5.98 <  0.001 

Hour3 0.0171 10.25 <  0.001 

Hour4 0.0242 13.14 <  0.001 

Hour5 0.0312 16.9 <  0.001 

Hour6 0.0446 25.31 <  0.001 

Hour7 0.0590 29.72 <  0.001 

Hour8 0.0516 19.31 <  0.001 

Hour9 0.0517 14.73 <  0.001 

Hour10 0.0521 13.47 <  0.001 

Hour11 0.0506 12.34 <  0.001 

Hour12 0.0452 10.75 <  0.001 

Hour13 0.0472 11.23 <  0.001 

Hour14 0.0463 10.91 <  0.001 

Hour15 0.0443 10.51 <  0.001 

Hour16 0.0449 10.69 <  0.001 

Hour17 0.0541 12.18 <  0.001 

Hour18 0.0577 12.5 <  0.001 

Hour19 0.0517 11.52 <  0.001 

Hour20 0.0515 11.9 <  0.001 

Hour21 0.0425 10.57 <  0.001 
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Hour22 0.0153 4.66 <  0.001 

Hour23 -0.0049 -2.04 0.042 

Hour24 -0.0100 -6.51 <  0.001 

Tuesday (d = 2) 
-0.0041 -0.89 0.374 

Wednesday (d = 3) 
-0.0001 -0.02 0.987 

Thursday (d = 4) 
0.0047 1.02 0.307 

Friday (d = 5) 
0.0047 1.05 0.293 

Saturday (d = 6) 
0.0073 1.63 0.102 

Sunday (d = 7) 
0.0016 0.46 0.645 

February (i = 2) 
-0.0019 -0.58 0.561 

March (i = 3) 
-0.0063 -1.86 0.062 

April (i = 4) 
-0.0144 -3.6 <  0.001 

May (i = 5) 
-0.0085 -2.03 0.042 

June (i = 6) 
-0.0135 -2.62 0.009 

July (i = 7) 
0.0032 0.53 0.596 

August (i = 8) 
0.0028 0.51 0.613 

September (i = 9) 
-0.0090 -1.75 0.08 

October (i = 10) 
-0.0033 -0.89 0.374 

November (i = 11) 
-0.0049 -1.64 0.101 

December (i = 12) 
0.0015 0.43 0.665 

            
0.0044 2.69 0.007 

             
      

0.0016 5.24 <  0.001 

    
      

-0.0013 -2.56 0.011 

                              
0.0051 2.67 0.008 
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0.0003 0.1 0.921 

            
        

-1.2149 -6.27 <  0.001 

             
    

0.6110 4.07 <  0.001 

         
0.0000 -5.65 <  0.001 

               
0.0000 3.75 <  0.001 

     
     

11.9449 4.01 <  0.001 

            
-0.0047 -0.51 0.613 

                     
0.0044 0.75 0.456 

Adjusted R
2 

 
0.4814   

Number of Observations 
8585   

Following Newey and West (1987), the reported p-values are robust to heteroskedasticity 

and autocorrelation. 

Based on the fitted values of the dependent variable, a revised forecast series for the sample 

period was calculated.  This is easily calculated by multiplying the anti-log of the fitted value by 

the day-ahead forecasted load.  Because the predicted anti-log values are not an unbiased 

predictor of ratio of actual load relative to forecasted load,  the  predicted anti-log values were 

then rescaled using the procedure presented by Wooldridge (2009, p. 211).  The root-mean-

squared-error of the revised forecast series is 2.98 percent of mean load which is significantly 

below the actual root-mean-squared error of 3.8 percent of load.  An out of sample analysis for 

the period 1 April 2010 through 31 March 2011 was also performed.  Using the parameters 

reported in Table 2, the root mean squared error of the revised out-of-sample forecast is 

approximately 352 MW (about 2.94 percent of mean load) as compared to 489 MW (about four 

percent of  mean load.  This represents an approximately 28 percent reduction.  The out-of-

sample results for selected hours are presented in Table 3.  While the reduction in the RMSE is 
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modest in some hours (e.g. hour 13), the error is significantly lower during the critical morning 

ramp-up hours.  For example, for hour 7, the RMSE of the revised forecast is 343 MW (3.01 

percent) as compared to 696 MW (6.12 percent). The error is also nontrivially lower in the late 

afternoon and evening.  For instance, in hour 17, the RMSE of the revised forecast is 476 MW 

(3.60 percent) as compared to 585 MW (4.43 percent).  In hour 22, the error is about 45 percent 

lower (287 MW vs. 521 MW; Table 3).    

 

Table 3 

Out of Sample Forecasting Results for Selected Hours, 1 - April 2010-  31 March 2011 

Hour Ending RMSE of the 

Revised 

Forecasts as a 

Percent of Mean 

Actual Load 

RMSE of 

CAISO’s 

Forecasts as a 

Percent of Mean 

Actual Load 

RMSE of the 

Revised 

Forecasts in 

MW 

RMSE of 

CAISO’s 

Forecasts in 

MW 

6 3.08 6.07 325 641 

7 3.01 6.12 343 696 

8 2.67 4.38 315 517 

9 2.21 3.25 268 396 

10 2.11 2.76 263 344 

11 2.38 2.61 302 330 

12 2.40 2.54 306 324 

13 2.67 2.79 340 356 

14 2.85 2.90 365 372 

15 3.01 3.14 388 405 

16 2.94 3.38 381 439 

17 3.60 4.43 476 585 
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18 3.49 4.28 474 581 

19 2.91 3.43 396 467 

20 2.76 3.24 374 439 

21 2.44 2.91 325 388 

22 2.29 4.15 287 521 

23 2.19 4.81 252 554 

24 2.51 4.08 267 435 

All Hours 2.94 4.08 352 489 

 

 

The out-of-sample results by month are presented in Table 4.   In every case, the revised forecast 

yields a significant reduction in the forecast error. The months with the largest percentage 

reductions in the forecast errors are the winter months of  December and January and the “Delta 

Breeze” months of  May, July, and August.  In each of these cases, the RMSE is more than 30 

percent lower under revised forecast. The month with the lowest reduction is September which is 

also a “Delta Breeze” month.  Even here, however,  the reduction is a nontrivial 19 percent (418 

MW vs. 518 MW; Table 4). 

  



20 
 

 

Table 4 

Out of Sample Forecasting Results by Month, 1 - April 2010 -  31 March 2011 

Month RMSE of the 

Revised 

Forecasts as a 

Percent of Mean 

Actual Load 

RMSE of 

CAISO’s 

Forecasts as a 

Percent of Mean 

Actual Load 

RMSE of the 

Revised 

Forecasts in 

MW 

RMSE of 

CAISO’s 

Forecasts in 

MW 

January 2.53 3.83 294 444 

February  2.35 3.25 269 372 

March  2.43 3.44 273 386 

April 2.73 3.54 295 383 

May 2.64 3.94 293 437 

June 3.92 4.94 500 630 

July 3.26 4.80 445 657 

August 2.63 3.83 350 508 

September  3.26 4.04 418 518 

October 2.77 3.93 323 457 

November 318 4.25 369 494 

December  2.60 4.10 304 479 

 

To assess further the performance of the revised forecast, the 100 worst forecasts using the 

existing method were identified. The RMSE for these 100 hours using the existing methodology 

is 1,516 MW. Using the revised forecast, the RMSE for these same hours is approximately 28 

percent smaller at 1,096 MW.  We then identified the 100 worst revised forecasts. The RMSEs 

for these 100 hours are 1,342 MW and 1,289 MW for the existing methodology and revised 

forecast, respectively.   
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4.  Summary and Conclusions 

This paper has presented evidence that a substantial portion of the day-ahead load forecast errors 

in the PG&E LAP of the California ISO are systematic in nature.  Specifically, the findings 

indicate that the day-ahead load forecasting errors are statistically related with the hour of the 

day, the day of the week, the month of the year, the shape of the day-ahead forecasted load 

profile, the shape of the day-ahead price profile, and the day-ahead electricity price relative to 

the natural gas price.  

An out of sample analysis indicates that it is possible to reduce substantially the load forecasting 

errors by revising the forecasts based on the systematic component of the errors.  More 

generally, the results are consistent  with the view that market prices in California’s electricity 

market are determined by economic fundamentals.   In general, the results suggest that there is 

merit in using markets to allocate scarce resources efficiently.   

In terms of methodology, the framework of analysis presented here can be expected to facilitate 

the analysis of disturbances on the power grid such as those that give rise to the deployment of 

emergency power.  To the extent that the circumstances associated with an unusual event are 

expected by market participants, they will be reflected in the day-ahead prices.  

We suspect that the explanatory power of the model can be significantly improved.   The fact 

that the coefficient on the “daylight” variable is statistically significant leads us to believe that it 

may be possible to further reduce the load forecast errors by improved modeling of the 

relationship between forecasted meteorological outcomes and load.   

 It will  be very interesting to see whether the findings reported here are confirmed or not in other 

ISOs where natural gas is not the primary fuel (e.g. PJM, New York, and France).  And it will be 

especially interesting to see whether the findings are conditional on the electricity market being 
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administered by the system operator. In the case of California, the ISO operates the market and 

has the right to impose price caps to mitigate the perceived exercise of market power.  In 

contrast, spot markets in most of Europe (e.g. UK, France, and Germany) are not managed by 

system operators.  
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